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Exploitation of Omnidirectional Reflectivity
Contract number: F49620-02-C-0076
Topic: AF02T015

Final Report
September 1, 2002 — September 30, 2003

Tri Van* Dennis Nyquist! Leo Kempelt Gang Bao}

Abstract

This is the final report for Phase I of the above STTR. contract with AFOSR during the
period September 1, 2002 - September 30, 2003. It is based on Status Reports 1, 2, and 3.
We summarize the development of integral equations and their numerical implementations
in solving wave propagation in a cylindrical fiber with concentric dielectric layers. These
multilayered fibers are also called Bragg fibers [12, 13, 15]. From preliminary computational
results, we find that an air-core multilayered fiber can effectively guide wave in its air core
when its total radius is a quarter of the operating wavelength.

1 Introduction

An omnidirectional reflector which reflects electromagnetic radiation from all incoming angles and
over a broad range of frequencies but exhibits virtually no absorption losses has been fabricated
for the 20,000 GHz — 30,000 GHz frequency range [4]. Recently, an omnidirectional dielectric
mirror fiber which is an omnidirectional reflector of cylindrical shape with the diameter of 200
pm, has been developed by Yoel Fink and his colleagues [7]. These omnidirectional dielectric
mirrors can be used in applications requiring optimal confinement or reflection of light at all
angles, such as optical cavities or hollow waveguide. It is of great interest to the Air Force if
omnidirectional reflectors and fibers which operate in the lower frequency range can be fabricated.
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1 INTRODUCTION 2

Microwave (MW, 1 GHz — 18 GHz) and millimeter wave (MMW, 18 GHz — 100 GHz) frequencies
are particularly desirable (see Fig. 1) in radar technology.
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Figure 1: Electromagnetic spectrum

Based on experience and published data, it is likely that high performance omnidirectional
reflectors for lower frequencies (MW and MMW) will be too thick to be practical. Hence, at lower
frequencies there is a need for higher contrast ratio layer structures, to enhance the reflection
coefficient at each interface to maintain a reasonable overall thickness. However, the use of higher
contrast systems will lead to a reduction in angle coverage. Therefore, to determine the low
frequency region where an omnidirectional reflector and a low-loss dielectric fiber are viable and
candidate materials for achieving required performance, it is important to perform analytical and
numerical study of the wave propagation in the planar and cylindrical dielectric layered structures.

In our preliminary study of Bragg fibers, it is possible to concentrate electromagnetic wave
in an air core Bragg fiber whose radius is comparable to wavelengths in the microwave region.
Further investigation and analysis are necessary to reach a more definite conclusion.

Omnidirectional reflectivity, the ability to reflect waves at arbitrary angle of incidence, is
possible in multilayered dielectric media whose band diagrams consist of spectral regions where
no light transmission exists in the media, which are called band gaps. For planar multilayered
stacks, transfer matrix method has been used in computing their band structures and reflectance
spectra (see, e.g., [1, 2, 5, 14]).

Unlike conventional fibers, which guide light through total internal reflection, Bragg fibers
achieve light confinement through Bragg reflection [13]. Bragg fibers uses a one-dimensional
periodicity of concentric rings that exhibit omnidirectional reflection in the planar limit. In other
words, in the limit of large radius, the circular Bragg fiber approaches a planar Bragg stack, whose
band diagrams consist of band gaps. Therefore, it is necessary to have Bragg fiber modes to fall
inside the TM and/or TE band gaps of the corresponding Bragg stack.

Wave propagation in a Bragg fiber can be analyzed by a transfer matrix approach and the
minimization of radiation loss as in [15], or by numerically solving Maxwell’s equations using
finite difference method in both frequency and time domains. Recently, asymptotic matrix theory
of Bragg fibers is developed in [13]. Yeh’s transfer matrix-minimization method is complicated
for guided modes that are not TM nor TE. In order to use finite difference methods, one needs
to construct fictitious boundary conditions such as perfectly matched layers (PML) or absorbing
boundary conditions (ABC). They can be also time-consuming. The asymptotic matrix analysis
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fails if the fiber core becomes too small and it is difficult to estimate the accuracy of the asymptotic
results. Operating wavelengths in these articles are in the optical region of the electromagnetic
spectrum.

The rest of the report is arranged as follows. In Section 2, we present the electric field integral
equation which describes wave propagation in a cylindrical waveguide of arbitrary shape. In
Section 3, Njstrom method is employed to discretize integral equations. The approach is simple
but very efficient. In order to determine propagating modes, non-linear eigenvalue problem needs
to be solved. Newton’s method and Ridder’s algorithm are implemented to find solutions of
the eigenvalue problem. In Section 4, numerical examples are given to illustrate the validity of
the integral equation formulation and numerical techniques. Finally, the report is concluded in
Section 5. Here, we also draw attention to mathematical issues that require detailed and rigorous
investigation.

2 Integral equations

In this section, we briefly present the EFIE to describe the surface-wave propagation in a dielectric
cylindrical waveguide. First, the general 3-D EFIE for a waveguide with a graded-index core of
arbitrary cross section shape is introduced. The 3-D EFIE is then reduced to a 2-D EFIE when
the index profile n is axially-uniform, that is, n(z,y,2) = n(p,6). Finally, for a graded-index
circular fiber with the radially-graded index core, i.e., n(z,y,z) = n(r), we further reduce the
2-D EFIE to a system of 1-D integral equations. We are especially interested in natural surface
wave modes which are nontrivial modal solutions to the homogeneous EFIE when the incident
field E¢ = 0.

In integrated dielectric waveguide system with a dielectric waveguide whose refractive index
profile is described by n(z,y, 2), lying on the planar interface {y = 0} between a substrate having
index n, and a cladding overlay of index n. (e.g., air with n. = np), the fundamental electric field
integral equation can be expressed as

2(m!y _ .
J"n(; )&, ') - B(r')dV' = E™(r),

E(r) - (+VV) [/

~where on?(r) = n?(r) — nZ, V is the volume where n? # 0, k. = w\/HoEc = W\/HoEo\/€c/€0 =
kone, and G(r,7') is the 3-D Hertzian potential Green’s dyadic defined as

G(r,v') = GP(r,7') + G"(r,7),

with GP is the principal Green’s dyadic for primary wave of Hertzian potential excited by polar-

ization and G” is the reflected Green’s dyadic for reflected wave of Hertzian potential excited at

the substrate-overlay interface. Note that if ny = n. (the substrate is removed), G" = 0. The

principal Green’s dyadic is defined as

- eikel?=T'| _

GP(r,v") = ———1I.
(r,7) dr|r — 7|

The formula of G" is omitted for brevity. In the rest of the report, we are interested in natural

surface-wave modes which are the solutions to the homogeneous EFIE when E**¢ = 0 and for

Ng = Ne.
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2.1 EFIE for axially-uniform waveguides
Consider the z-uniform waveguide whose refractive index profile is z-independent, that is, n(r) =
n(p), where p = zz + yjj. Consequently, the electric field E can be written as

E(r) = e(p)e™, p=uzt+yij,

where 3 is the propagating constant which is an unknown eigenvalue parameter. The homogenous
EFIE becomes

(577.2 / -
(o) - 02+ 99) [ a5 L5005 elef) =0, (1)
C
where Q) is the cross section of the waveguide and
= —_— / =
3(p,p") = 9(p,P)I = ————KO(%I;; by,

with
Ve =B — k. ()
By using divergence theorem, one can show that transverse components of (1) are independent
and hence yield a unique description of the surface-wave modes. Therefore, it is sufficient to
consider the following equation for the transverse components e; = ezZ + ey§ of e:

2 /n2 " , ,
e:(p) — Vi (— ji n(p ) g -ei(p)g(p, )l + / L(ﬁlp)e—(—)g(p,p)d5> (3)

(o

i3 / 5n2(p)en(p)glp, #)dS' = 0, Vpeq,
0

<«

where I' = 89, 7/ is the outward normal of the boundary I', and V¢ = 69-5: + %

2.2 EFIE for axially-uniform circular waveguides

Assume that the index profile of the waveguide only varies radially, that is, n(p) = n(r). In
(), we note that A/ - e, = #' - &, = ey, thus, the homogeneous EFIE in polar coordinates can be
expressed as

t(’l”, ¢) _ vt (_f 6n2(r,)er(7'l, ¢I) KO(’YCIP - pll)dl, + dn2(7",) CT(T,, ¢,) KO(’YCIP - p,l)dsl)

n2 27 q dr'  n2(r') 27
o
—k‘g/5”2(7‘/)6,5(1",,(15,)1(0(70!" pl)dsl - 0.
Q 2T

We can decompose the above vector EFIE into two coupled EFIE’s for the scalar fields e, and ey
as

er(r, @) — % [_ ?{ i(a), (o gyFolrle =D gy | [ dn®() erlr’ ) Kolelp = /) ds,]

n? 2 q dr'  n%(r') 2

88 [ 2 )er, oot — ) + el #sin( — 2 LGE=E sy =0
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190 6'"*2(0') (’YCip o) . dnz("',) er(r',¢') Ko(velp = P'l) ;e
7‘6(}5[ ,?{ er(e, 4) i+ / dr' n2(r') 27 ds

= 6n2(r>[ er(r, ) sin(s — ) + e, cos( — 1 20— P ggr _ g

es(r, &) —

We can write the unknown scalar field components are represented by Fourier series with radially-
dependent coefficients in the angular variable ¢ as

oo

er(rd)= > Arm(r)e™, ey, g)= ) iAgm(r)e™. (4)

m=—00 m=—0o0

Substituting (4) into the integral equations for e, and ey yields the integral equations for the radial
coefficients A, m(r) and Ay m(r): for 0 < r < a where a is the radius of the circular waveguide,

5(r' — a)on?(r') 1 dn2(r’)] OWO e (7, 77) !

Arm(r) = fo Arm(r') | = n2 n2(r’) dr' or (5)
~k2 fo Sn2(r")[Arm (r" Y Wem,, (1, 7") — Ag i (T YW e (m, 7Y dr’ = 0,
and ! 2( I
Apm(r) — = fo Arn(r') I: o= 2)2671 () + n227.1) d:’ )] Wo,ym (7 ')’ dr! (6)
-k [y Jn )= Arn (P )Ws ym (r ) + Agm (Y ) Wey (ry7)]7dr’ = 0,

where 7y, is defined by (2) and the kernels W .., We ., and W, are defined as

Wopm(r7') = o= / ™ Ko(vm 7”2 + 2 — 21/ cos ) dap
Kn(ym?) Ln(ymr’)  if 7 <1,
Ln(YmT) K (ymr’) i1/ > 1,
Wenn(r,r') = 1 / ™ cos wKO('ym\/ r2 + 72 — 2rr' cos ) dyp

2n
l { m+1 ('YmT)Im+1('YmT ) + Km—1 (’Ymr)I -1 (77717',) if ' <,
2 | Ims1(¥mr) Kmi1(Vm?”) + Im—1 (Yo ) K1 (Ym?') i 7' > 1,

and

Wi nn(r,7') = L €™ sin Y Ko(ymA/ 72 + /2 — 2rr' cos)dy
et 2

— _1_{ Km+1(’7m7')Im+1(’Ym"') Kna ('Ymr)I —1('7m7') if v <1,
2 | Imt1(vmr) m+1(’YmT ) = In—1(m7) Km—1 ('Ym'r’) if ' > .

3 Computational method

Integral equations (5) and (6) are discretized by Nystrom method [10]. Since kernels Wy, W, and
W, are in closed forms, the implementation of the method is simple.




3 COMPUTATIONAL METHOD 6

3.1 Nystrom’s method

Ni/strom method is used to discretize (5) and (6). For brevity, the interval (0,a) is divided
into segments of length Ar = a/N where N is the number of subintervals. Denote r; = i * h,
i=1,2,...,N and g = € for some 0 < € < 1. First, the integrals in (5) and (6) are approximated
by the composite trapezoidal rule. Hence, we get

[_ §(rj — a)An%(r;) + 1 d’n2(?"j)] OWo, 1 (T, Tj)'rjAr

n2 n?(rj) dr' or

N
Arn(r) = Y wjArm(r;)

§=0
N

—k3 Z Wi AN (1) [Arm (1)) Wepym (1 75) = A (15) Wy (r, 1) AT = 0,
=0

and

N
m 8(r; — a)An?(r; 1 dn?(r;
A¢,m(7") s ZAr,m('rj) [— ( 2 732 ( ]) + n2(’l“j) d‘f"])] WO,’)’m ("'v Tj)rjAT
o

C

N
—k3 Y AR ()= Arm (1) Wosm (,75) + Agpm(75) Wey (1 1)l Ar = 0,
=0

where wo = wy = 0.5 and w; = 1 for j # 0, N. Now, setting r = r; for i = 0,1,..., N, we get
the non-linear eigenvalue problem

[I—M(n)A=0, m=0,12,..., (7

where M(7s) is a square matrix of size 2(NV + 1) x 2(N + 1) and A = [A, A4]T is the column
vector consisting of the unknowns A, (r;) and Ag m(rs). For each given m, we denote

Ty = {0<7£ngko,/n$m—ngl, z=1,2,...}

as the set of allowable solutions where n; = maxgcr<qn(r). The problem (7) has solution if

and only if
det [I — M(ym)] = 0. (8)

3.2 Root finding problem

The solutions of the determinant equation (8) can be found by either Newton-Raphson’s method
or Ridder’s method. These methods are both implemented for this report. Let -y, go from 0 to
I' = kgy/maxn2 — n2. When both the real part and imaginary of the determinant change their
sign in one step, we use the Newton-Raphson method or Ridder’s method to search for the zero
of the determinant in this interval. In the Newton-Raphson, the derivative of M can be expressed
in a closed form and we have

(k-+1) = fY'r(rl:) - = aM 3
trace{ (M) g~ ()}

Yo k=0,1,2,..., (9)
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where trace is the trace of a matrix, and 7,(3) is the midpoint of the interval in consideration. In

(9) we need to compute the matrix

_1dM
B(v{®) = [M(v)] lm(%(ff))-
One can efficiently do this by solving
dM
MOE)B(E) = m(vfr'f))- (10)

To simplify the notations, we denote the above problem as MB = D. We use the following
procedure [6]
Compute PM = LU.

fork=1:m
Solve Ly = PDy,
Solve Uby, = y
end

where Dy, is the kth column of D.

4 Numerical experiments

In this section, we present several numerical examples which illustrate the convergence and ac-
curacy of the integral equation formulation. We first consider the step-index fiber since its exact
solutions are available. It can be seen from the computed data that the integral formulation is
very accurate with even the simplest discretization method (trapezoidal rule). In the following
numerical examples, the parameters are unitless. We choose operating wavelengths in terms of
the radius of a fiber. In each example, we plot the absolute value of the normalized field solution
of E, and of E, as a function of r and as a function of (r,¢). All results are computed with
Matlab.

4.1 Step-index fiber

Consider a step-index fiber with
ng=16, nc=10, a=1, A= 2a. (11)

In this case, we can obtain the transcendental equation

(uﬁ% ’ w%ﬁu«z)) (Z—éu?:f& * w%n%) = (‘1‘ i i) (2—25 * al‘f) > (02)

where
— 2,2 _ (32 - 2 _ 1292 _2r
u=ay/kind— (%, w=a\/B°—ksng, ko= N

In Tables 1, 2, and 3, we compare the solutions v, to (8) with the “exact” solutions to the
transcendental equation (12). In each table, N denotes the number subintervals in [0,qa]. If
m = 0, we obtain yrg and yra. In Figures 2 and 3, we plot the electric field distributions
and their intensity distributions, respectively. It is evident from the tables and figures that
solutions to integral equations are very accurate. The convergence rate can be improved when
more sophisticated quadratures are applied.
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N YT™ YTE
32 | 2.18506665 | 2.55757995
64 | 2.18337629 | 2.55601272
128 | 2.18295441 | 2.55562134
512 | 2.18282263 | 2.55549906
1024 | 2.18281604 | 2.55549294

[ exact [ 2.18281384 | 2.55549091

Table 1: Exact solutions and integral equation solutions for the TE and TM modes (mode number
m = 0).

Exact and numerical solutions for TE and TM

ﬁ .
3 0.
5
0.4
0.3 . : !
d : : : : : ——-e)(act:Er
0‘2 ..... ...... ».4 '- ..... . Nystrom:Er 14
ol | — exactE
: : : : : : * Nystrum:E‘
c i i i i i i I T i
0 01 02 03 04 05 06 07 08 09 1

r/a

Figure 2: Exact and Nystrom solutions for TE (E,) and TM (E4) cases. The number of subin-
tervals used in the Nystrom method is N = 128.

E, field, n=0 E' field,n=0

01 02 03 04 05 06 08 08 1 0 01 02 03 04 05 06 07 08 08

0

Figure 3: Intensity: |E,|? and |E4|?.
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N V1,2 71,1
32 | 0.57962508 | 3.34572448
64 | 0.57603586 | 3.34467642
128 | 0.57513626 | 3.34441567
512 | 0.57491122 | 3.34435058
1024 | 0.57485495 | 3.34433431

[‘exact | 0.57483619 | 3.34432888 |

Table 2: Exact and integral equation + for the hybrid modes (mode number m = 1).

N V2,1
32 | 2.20503141
64 | 2.20316831
128 | 2.20270322
512 | 2.20258699
1024 [ 2.20255793
| exact [ 2.20254824 |

Table 3: Exact and integral equation + for the hybrid modes (mode number m = 2).

4.2 Multilayered fiber

Consider the following multilayered dielectric fiber immersed in air with the air core and 12 layers

of dielectric pairs, which can schematically be written as nSre(n HnL)lgng’i‘f. The fiber parameters
are ‘
Nair = 1, ng = 4.6, ny = 1.5, (13)
deore = 1, dg = 0.25, df, = 0.75.
Here, nS™ = 1 denotes the air-core region and n&' = 1 denotes the air region exterior to the

fiber. The fiber radius is dmax = 1 + 12(.25 + .75) = 13. The operating wavelength is A = 15.5.
Hence, if the unit of the radius is in millimeters (mm), the corresponding wavelength is 15.5 mm
which is in the microwave region. In Figures 4 and 5, we plot the solutions E, and Ey and their
intensity distributions for m = 1 and y = 1.03184. Here we use the following grid sizes

hcore = dcore/lo, hH = dH/15, hL = dL/QO.

We note that most of the field is concentrated in the air core and the first layer (0 < r < 2). The
ability to guide waves in the air core is of importance since non-linear effects and propagation loss
are reduced significantly.

4.3 Quarter-wavelength fibers

We now consider quarter-wavelength multilayered fibers, that is, their radii are a quarter of the
operating wavelength. This has no relation to the quarter-wave dielectric mirrors or stacks [5].
The thickness of the high-index layer and the low-index layer can be identical or different. In
the following examples, we solve for propagating wave whose mode number is m = 1. It can be
seen from the plots of intensity distributions that most of propagating field is concentrated in



4 NUMERICAL EXPERIMENTS

Mode number m=1

T J —  ——r———
: : : : : =- = r-component
_ ......... ......... ........ _¢_component

0.9t f:

08LAE A\

0.7}

06

Tise
-

Normalized eigenvector F

Figure 4: Field distribution with m =1 and vy = 1.03184.

E field, m =1 E’ field, m =1

yla ¥/a

Figure 5: Intensity distributions with m =1 and v = 1.03184.
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the air core and its neighboring layers. This suggests that low power-loss is possible for these
fibers. In the microwave region, these fibers have radii between 7 mm and 19 mm. Furthermore,
by comparing the corresponding solutions gamma (m = 1) in each case, for example, Figures6
and ?7, 8 and 22, 12 and 26 fibers with different layer thickness can confine wave in their air core
more efficiently than those with same layer thickness.

4.3.1 Different layer thickness

Consider fibers with 6, 12, and 18 layers of dielectric pairs, that is, nSr(ngng)nSd where

k = 6,12,18. Fiber parameters are

Nair = 1, ng = 4.6, ny, = 1.5,
deore = 1, dy = 0.25, dy, = 0.75.

In Table 4, solutions «y to (7) for m = 1 are listed for quarter-wavelength multilayered fibers whose
high-index and low-index thicknesses are different.

Number of layers 5
6 layers 0.54353618
A= 4[dcore + G(dH + dL)] =28
12 layers 0.03063851
A = 4dcore + 12(dgr + dp)] = 52 | 0.29596912
18 layers 0.031056617
A = 4[dcore + 18(dgr + d1)] = 76 | 0.20275634

Table 4: Solutions v for multilayered quarter-wavelength fibers with different number of layers.
High-index and low-index thicknesses are different.
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Mode number n=1
T T T T T
: : : ~—— r-component
........ — ¢~component

Normalized eigenvector F

Figure 6: Normalized intensity profile in the 6-layer fiber of radius 7 mm with different refractive-
index thicknesses: v = 0.54353618.

Figure 7: Normalized intensity distribution in the 6-layer fiber of radius 7 mm with different
refractive-index thicknesses: v = 0.54353618
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Mode number n=1

1F : T
— r-component
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Figure 8: Normalized intensity profile in the 12-layer fiber of radius 13 mm with different
refractive-index thicknesses: v = 0.03063851

Figure 9: Normalized intensity distribution in the 12-layer fiber of radius 13 mm with different
refractive-index thicknesses: v = 0.03063851
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Mode number n=1

T T
— r-component
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Figure 10: Normalized intensity profile in the 12-layer fiber of radius 13 mm with different
refractive-index thicknesses: v = 0.29596912

Figure 11: Normalized intensity distribution in the 12-layer fiber of radius 13 mm with different
refractive-index thicknesses: v = 0.29596912
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Mode number n=1

—— r-component
—— ¢-component H

e
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e
w

e
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Figure 12: Normalized intensity profile in the 18-layer fiber of radius 19 mm with different
refractive-index thicknesses: v = 0.031056172

Figure 13: Normalized intensity distribution in the 18-layer fiber of radius 19 mm with different
refractive-index thicknesses: v = 0.03105617
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Figure 14: Normalized intensity profile in the 18-layer fiber of radius 19 mm with different
refractive-index thicknesses: v = 0.20275634

Figure 15: Normalized intensity distribution in the 18-layer fiber of radius 19 mm with different
refractive-index thicknesses: v = 0.20275634 ’
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4.3.2 Same layer thickness

Consider fibers with 6, 12, and 18 layers of dielectric pairs, that is, nS"(ngng);nSd where

k = 6,12,18. We assume that the high-index and low-index layers have the same thickness. Fiber
parameters are

Nar = 1, ng = 4.6, ny = 1.5,
dcore = 1, dH = 0.5, dL - 0.5.

Solutions -y with m = 1 for different fibers are listed in Table 5.

Number of layers vy

6 layers 0.26877105

A = 4[dcore + 6(dg +d)] = 28 | 0.34457807
0.71278887

12 layers 0.21106533

A = 4[dcore + 12(dg +dr)] = 52 | 0.38696444
18 layers 0.14845343

A = 4[dcore + 18(dy + dr)] = 76 | 0.26511726

Table 5: Solutions < for multilayered quarter-wavelength fibers with different number of layers.
High-index and low-index thicknesses are equal.
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Figure 16: Normalized intensity profile in the 6-layer fiber of radius 7 mm with same refractive-
index thicknesses: v = 0.26877105




4 NUMERICAL EXPERIMENTS 18

Figure 17: Normalized intensity distribution in the 6-layer fiber of radius 7 mm with same
refractive-index thicknesses: y = 0.26877105
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Figure 18: Normalized intensity profile in the 6-layer fiber of radius 7 mm with same refractive-
index thicknesses: v = 0.34457807
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Figure 19: Normalized intensity distribution in the 6-layer fiber of radius 7 mm with same
refractive-index thicknesses: v = 0.34457807
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Figure 20: Normalized intensity profile in the 6-layer fiber of radius 7 mm: «y = 0.71278887
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Figure 21: Normalized intensity distribution in the 6-layer fiber of radius 7 mm with same
refractive-index thicknesses: v = 0.71278887
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Figure 22: Normalized intensity profile in the 12-layer fiber of radius 13 mm: y = 0.21106533
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Figure 23: Normalized intensity distribution in the 12-layer fiber of radius 13 mm with same
refractive-index thicknesses: v = 0.21106533
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Figure 24: Normalized intensity profile in the 12-layer fiber of radius 13 mm with same refractive-
index thicknesses: v = 0.38696444
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Figure 25: Normalized intensity distribution in the 12-layer fiber of radius 13 mm with same
refractive-index thicknesses: v = 0.38696444
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Figure 26: Normalized intensity profile in the 18-layer fiber of radius 19 mm with same refractive-
index thicknesses: vy = 0.14845343
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Figure 27: Normalized intensity distribution in the 18-layer fiber of radius 19 mm with same
refractive-index thicknesses: v = 0.14845343

Mode number n=1

—- r-component
-~ (-component

e
3

e
)

o
'S

Normalized eigenvector F
o o
w 0N

o
N

0.1

Figure 28: Normalized intensity profile in the 18-layer fiber of radius 19 mm with same refractive-
index thicknesses: vy = 0.26511726
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Figure 29: Normalized intensity distribution in the 18-layer fiber of radius 19 mm with same
refractive-index thicknesses: v = 0.26511726

5 Summary and plans

In this final report, we have summarized the progress made during the period September 1, 2002-
September 30, 2003. We derive the integral equations for electric fields propagating in a fiber of
arbitrary cross section and arbitrary refractive index.

Mathematical analysis of conventional optical fibers is rich and widely available in literature,
for example [3, 9, 11] and references therein. It helps the advancement of optical fiber industry
in understanding and designing fibers for data transport and telecommunications. In contrary,
to our best knowledge, there is little of rigorous mathematical study of Bragg fibers due to the
fabrication difficulty. Recently, the publications of A dielectric omnidirectional reflector [4], An
all-dielectric coazial waveguide [8], and External reflection from omnidirectional dielectric mirror
fibers [7] in Science report successful fabrications of omnidirectional reflectors and multilayered
fibers for optical wavelengths. These articles create a new interest in studying low-loss Bragg
fibers at microwave and millimeter wavelengths for radar applications. From previous examples
in Section 4, multilayered fibers of radii between 7 mm and 19 mm concentrate wave propagation
within their air core for wavelengths in the microwave range. Hence, they can be very useful in
radar technology.

A thorough analysis of the integral operators described in Section 2 is needed. Their spectral
properties can be studied with functional analysis. A priori knowledge of the band structure of
the integral operators will be very important in designing accurate and fast numerical algorithms.
Possible problems such as the existence of spurious modes can also be addressed and remedied if
one can predict the number and location of propagating modes. Error and convergence analysis
of the presented numerical method needs to be done rigorously. This study is very important,
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especially when the method is applied in optimal designs. We plan to perform these analyses
rigorously. ‘

For radar applications, propagating power of a fiber is probably the most important property
that has great impact on the fiber usefulness. Hence, optimizing its power over parameters such as
number of layers, layer thickness, and refractive index, is of great interest. We plan to determine
an appropriate objective function to be optimized by an accurate and fast optimizing algorithm
which can be parallelized for different computer platforms.
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